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OBJECT 

The object of this work was to study the shear strength of a struc- 
tural ahesive used in Army helicopters as a function of strain rate and 
failure time at several temperatures. 

SUMMARY 

Shear strengths of adhesive AF126 bonds to two thicknesses of 
aluminum were measured at constant rate of crosshead separation. 
Primarily cohesive failure was observed in all cases.    By using re- 
lations proposed by Cherry and Holmes, the shear strength could be 
quantitatively related to temperature and strain rate or failure time. 
Of specific engineering interest would be the possibility of determin- 
ing the reliability of a bonded joint for specific periods of time as a 
function of continuously applied stress at a given temperature. 

INTRODUCTION 

Scientists in the Materials Engineering Laboratory at Picatinny 
Arsenal have in the past shown some interest in the causes of failure 
of adhesive bonds under various loading conditions (Refs 1,  2).    More 
recently,  some constant strain rate shear strength determinations 
have been made on an AF126 adhesive used for structural bonding in 
Army helicopters.   This paper shows that the shear strength of such 
a bond, under conditions where cohesive failure occurs,  can be quan- 
titatively related to temperature and strain rate or failure time. 

RESULTS AND DISCUSSION 

Tables 1 and 2 show the data for the constant strain rate (constant 
crosshead separation) measurements on 1/8 inch and l/l6 inch alum- 
inum adherends bonded with AF126 adhesive. Three crosshead rates 
(0.105, 0.8#and 2 in. per min) were used at each of six temperatures 
(193°,  233°,  273°,  296°,  323  , and 343°K). 

Cherry and Holmes (Ref 3) suggested that when a shear stress is 
applied to a polymer there is an instantaneous elastic deformation re- 
sulting from bond angle bending as well as simultaneous plastic de- 
formation, stretching the polymer chains joining adjacent slipped 



areas of the polymer until these chains break.   When a critical rate 
of chain scission is exceeded, catastrophic failure occurs.    For con- 
stant strain rate experiments, they obtained the relation 

S   =   (2kT/q) lnC+(2kT/ß) ln(hl/p 6 RT)+(2RGe)l/2   +   2e0/q      (1) 

S is stress at failure, 8 is volume of elements that respond in failure, 
C is rate of crosshead separation, i is diameter of "dislocation loop", 
p is density of dislocation lines in unit volume of the medium(2RGe) 1 /2 
is a critical value of strain at failure, and £ 0 is an activation energy 
barrier.   Since the last three terms on the right-hand side of Equation 
1 are constant at a given temperature, this equation requires that a 
plot of S versus log C be linear.   Figures 1 and 2 show such plots for 
the data given in Tables 1 and 2* 

An alternative form of Equation 1 may be obtained by dividing 
through by T 

1/2 
S/T   =   (2k/s ) lnCi^- ln(^-    U <2RGe)       +i^o (2) 

°> P^RT T pT 

In this case, the S/T VS log C plots should be linear for each tempera- 
ture.   Figures 3 and 4 show the appropriate straight lines. 

Equations 1 and 2 suggest that S or S/T should also be linear with 
log ( l/tf). This will be so if the deformation (p) is constant at a given 
temperature,    (tf is failure time.) 

ctf = e O) 

The Ctf products shown in Table 3 give an indication of the con- 
stancy of g at each temperature.   For l/l6 inch aluminum in the three 
cases where values are not recorded, the machine stalled on release, 
leading to a hesitation and longer times than would otherwise have been 
observed.   A somewhat more convenient representation can be given 
by rearranging Equation 3 and taking logarithms. 

log C   =   log e +log (l/tf) (4) 



Equation 4 shows that a plot of log C versus log (l/tf) drawn with a 
slope m   1 will yield g at log (l/tf) = 0.    Figures 5 and 6 show the 
straight lines drawn with slope = 1 in each case.   Values of log £ 
obtained from these lines are given in Table 4. 

It is interesting to note that there appears to be a small but notice- 
able variation of deformation with temperature for the samples using 
l/8 inch aluminum adherends.    In the case of l/l6 inch aluminum ad- 
herends, the deformation does not appear to vary with temperature, 
at least beyond the range of experimental error.   The deformation 
(as used in this report and calculated from the observed C and tf 
values) is presumably made up of grip slippage, and deformation in 
the links of the machine, the aluminum metal adherends, and the ad- 
hesive.   The l/l6 inch aluminum adherends deform visibly under the 
test conditions while the 1/8 inch aluminum adherends do not.   The 
observed differences are probably due to this difference in the response 
of the aluminum. 

The reasonable constancy of the deformation at a given temperature 
for each of the crosshead rates makes it possible to replace log C in 
either Equation 1 or Equation 2 with log £ + log (l/tf).   Then at a given 
temperature S(or S/T) should be linear with log (l/tf). 

.   (2WJinp+(2kT)lnUI + 2CT   ln(hl]   +(2RGe)1'*+2PA 

JB p tf        p ppkT 
*o_ (5) 

P 
or 

3.  .  (^ln, + (^lntU+ilSln(hlI  +USGJl/2
+^ 

T p p tf ß       ppkT        T px 

Figures 7-10 show that the lines required by Equations 5 and 6 are 
reasonably linear. 

Equations 1,  2, 5, and 6 clearly indicate that the slopes of the 
lines in Figures 1-4, and 7-10 permit evaluation of ß.   Table 5 gives 
values of ß determined from each of the four plots at each thickness 
of aluminum adherend.    Average values are summarized in Table 6. 
Although numerical values of ß for the crosslinked modified epoxy 
are considerably lower than those found by Cherry and Holmes (Ref 3) 
for polyethylene, ß increases with temperature as observed by those 
investigators. 



Some constant stress data for AF126 adhesive used with l/l6 
inch aluminum panels is available (Ref 2).    In this case, Cherry and 
Holmes (Ref 3) obtained the relation 

, .. LSKD lntf ♦ <fi bAJjjj ♦ (2RGe,
l/2 + 2,0/e (7, 

9 8 pn K1 

Equation 7 requires that S be linear with log tf with g readily accessible 
from the slope as in the case of constant rate of strain experiments. 
Such a comparison should be useful in giving an indication that the same 
parameters describe the behavior under differing types of loading. 
Unfortunately, a direct comparison is not possible since at the long 
times of the constant stress experiments, the failure time was rather 
markedly dependent on humidity (Ref 2).   Also, at the much lower 
loads of the constant stress experiments, there was no noticeable 
deformation of the l/l6 inch aluminum.    Hence, a quantitative com- 
parison of ß values for the two cases does not seem to be in order. 
However, Figures 11-13 show that the constant stress data, allowing 
for the expected adhesive scatter, does obey Equation 7.   This gives 
some confidence that these relations can describe data obtained by 
different loading methods.   Table 7 gives apparent 9 values calculated 
from the slopes of the lines in Figures 11-13.   Qualitatively, the values 
appear to be in the general range that would be expected from the re- 
sults described above.   However, in each case, there seems to be a 
rather sharp and unexpected downturn in the g (increase in slope) 
curve at the highest temperature (344*K). 

EXPERIMENTAL PROCEDURE 

Materials 

2024-T3 aluminum panels, 4" x 13" x l/8". 

2024-T3 aluminum panels, 4" x 12" x 1/16". 

AF126-3, a thermosetting, nonvolatile,  modified epoxy film 
adhesive designed for structural bonding of metals. 



Preparation of Adherends 

Scribe marks were placed 1 /Z inch from the long edge of each 
panel to assure an accurate overlap of the joint.   Two panels were 
then clamped together in the position for bonding using the scribe 
marks as a guide.   Alignment holes were drilled through the area 
to be bonded at both ends of the panel.   The clamps were then re- 
moved and the panels were washed with acetone followed by degreas- 
ing in hot vapors of stabilized per chlor oethylene.   The area to be 
bonded was then etched for 5 minutes at 150* F in FPL etch solution 
in accordance with MIL-A-9067C, washed with tap water at 140° F, 
and rinsed in deionized water.   The panels were dried in a forced- 
air circulating oven at 140°F for one hour. 

Preparation of Lap Shear Specimens 

One group of panels was prepared using the 1/16 inch thick alum- 
inum adherends and a second group was prepared using the 1/8 inch 
thick adherends. 

A single layer of the film adhesive was placed in the joint and 
the two adherend panels were pinned in place by putting aluminum 
rods through the previously drilled holes and hammering the protrud- 
ing ends flat.     Three bonded panels were prepared at one time, over- 
lapping the ends to give them proper support.    An extra panel was 
used for the same purpose under the end of the third bonded panel. 
The assembly was placed in a hydraulic press at room temperature 
and subjected to 50 psi pressure.   The temperature was raised to 
250°F at a rate of approximately 8°F per minute.   The pressure and 
temperature were maintained for one hour.   The assembly was then 
cooled under pressure.   These conditions produced a glue line thick- 
ness of 2-3 mils.   One-inch-wide specimens were cut from the panels 
with a bandsaw.   The pieces from the ends of each panel were dis- 
carded. 

Specimen Testing 

The testing temperatures were maintained by using liquid carbon 
dioxide and electric heaters as required with a Standard test cabinet. 
The load was applied with a 60, 000 -pound Baldwin testing machine 
operating at a constant rate of crosshead separation.    Failure times 
were measured with a stop watch. 
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TABLE 1 

Failure data for AF126 adhesive with 1/8 inch thick aluminum adherends at constant strain rate 

Temperature,  *K 

193 

193 

193 

233 

233 

233 

273 

273 

273 

296 

296 

296 

323 

323 

323 

343 

343 

343 

Crosshead Separation 
Rate (C),  in. /min 

0.105 

0.8 

2 

0.105 

0.8 

2 

0.105 

0.8 

2 

0.105 

0.8 

2 

0.105 

0.8 

2 

0.105 

0.8 

2 

S, psi S/T t , min 

6100 31.6 1.608 

5330 27.6 0.203 

4540 23.5 0.0805 

6310 27.1 1.423 

5920 25.4 0.198 

5020 21.5 0.065 

6300 23.1 1.508 

6060 22.2 0.195 

5050 18.5 0.065 

5740 19.4 1.332 

5490 18.5 0.190 

4870 16.4 0.060 

4860 15.1 1.200 

4610 14.3 0.160 

4120 12.8 0.053 

3790 11.0 1.140 

3920 11.4 0.152 

3540 10.3 0.053 



TABLE 2 

Failure data for AF126 adhesive with l/l6 inch aluminum adherends at constant strain rate 

Temperature,  °K 

193 

193 

193 

233 

233 

233 

oo 273 

273 

273 

296 

296 

296 

323 

323 

323 

343 

343 

343 

Crosshead Separation 
Rate (C), in. /min 

S, psi 

0.105 4760 

0.8 4510 

z 4300 

0.105 5410 

0.8 5280 

2 4800 

0.105 5300 

0.8 5160 

2 4660 

0.105 4830 

0.8 4870 

2 4430 

0.105 4320 

0.8 4280 

2 3810 

0.105 2790 

0.8 2520 

2 2750 

S/T t , min 

24.7 1.470 

23.4 1.428 

22.3 0.108 

23.2 1.735 

22.7 0.265 

20.6 0.093 

19.4 1.657 

18.9 0.250 

17.1 0.097 

16.5 2.165 

16.5 1.747 

14.9 0.108 

13.4 1.538 

13.3 0.222 

11.8 0.092 

8.1 1.893 

7.3 0.793 

8.0 0.085 



TABLE 3 

Deformation from C and tf values 

Temperature,  *K e = Ctf 
1/8 inch Al l/l6 inch Al 

193 Ö.105 0.17 0.15 

193 0.8 0.16   

193 2 0.17 0.22 

233 0.105 0.15 0.18 

233 0.8 0.16 0.21 

233 2 0.13 0.19 

273 0.105 0.16 0.17 

273 0.8 0.20 0.20 

273 2 0.13 0.19 

296 0.105 0.14 0.23 

296 0.8 0.15   

296 2 0.12 0.22 

323 0.105 0.13 0.16 

323 0.8 0.13 0.18 

323 2 0.11 0.18 

343 0.105 0.12 0.20 

343 0.8 0.12   

343 2 0.11 0.17 



TABLE   4 

Deformation from log C versus log (l/tf) plots 

loft ft 
Temperature,  *K l/8 inch Aluminum l/l6 inch Aluminum 

193 -0.77 -0.74 

233 -0.86 -0.71 

273 -0.86 -0.70 

296 -0.88 -0.65 

323 -0.95 -0.73 

343 -0.96 -0.70 

10 



TABLE 5 

8 Values from slopes of the vrrious plots 
e 

Q,   A 3 

Temperature, K   1/8 men Aluminum    l/lb men Aluminum 

From S Versus Log C Plots 

193 1470 5150 
233 2350 4920 
273 2880 5610 
296 4350 9250 
323 5520 8600 
343 7790 

From S/T Versus Log C Plots 

10400 

193 1480 5150 
233 2350 5150 
273 3020 5660 
296 4230 8650 
323 5770 8650 
343 9070 

From S Versus Log (l/tf) Plots 

11300 

193 1510 4370 
233 2350 4690 
273 3010 5270 
296 4260 7660 
323 5860 7910 
343 8900 

From S/T Versus Log (l/t ) Plots 

10400 

193 1480 4120 
233 2350 4780 
273 2390 5040 
296 4230 7570 
323 5290 6760 
343 9070 11300 

11 



TABLE 6 

Variation of average ß values with temperature 

 P. A'3  
Temperature, *K   1/8 inch Aluminum 1/16 inch Aluminum 

193                  1500 4700 

233                  2350 4900 

273                  2950 5400 

296                  4300 8300 

323                  5600 8000 

343                   8700 11000 

12 



TABLE 7 

8 Values derived from constant stress data 

Temperature,   °K 

296 

322 

333 

344 

20% RH 

8100 

9100 

5200 

50% RH 

9700 

10000 

7800 

95% RH 

3800 

5500 

7000 

5900 

13 
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Fig 5 Log C versus log (l/t ) for AF126 adhesives 
with l/8" aluminum adherends 
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